首页> 外文OA文献 >Hole pairing from attraction of opposite-chirality spin vortices: Non-BCS superconductivity in underdoped cuprates
【2h】

Hole pairing from attraction of opposite-chirality spin vortices: Non-BCS superconductivity in underdoped cuprates

机译:来自相反手性旋涡的吸引力的空穴配对:掺杂不足的铜酸盐中的非BCS超导

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Within a gauge approach to the t-J model, we propose a non-BCS mechanism of superconductivity (SC) for underdoped cuprates. We implement the no-double-occupancy constraint with a (semionic) slave-particle formalism. The dopant in the t-J model description generates a vortexlike quantum distortion of the antiferromagnetic (AF) background centered on the empty sites, with opposite chirality for cores on the two Néel sublattices. Empty sites are described in terms of spinless fermionic holons and the long-range attraction between spin vortices on two opposite Néel sublattices serves as the holon pairing force, leading eventually to SC. The spin fluctuations are described by bosonic spinons with a gap generated by scattering on spin vortices. Due to the no-double occupation constraint, there is a gauge attraction between holon and spinon, binding them into a physical hole. Through gauge interaction the spin-vortex attraction induces the formation of spin-singlet [resonance valence bond (RVB)] spin pairs by lowering the spinon gap, due to the appearance of spin-vortex dipoles. Lowering the temperature, the proposed approach anticipates two crossover temperatures as precursors of the SC transition: at the higher crossover a finite density of incoherent holon pairs are formed, leading to reduction of the hole spectral weight, while at the lower crossover a finite density of incoherent spinon RVB pairs is also formed, giving rise to a gas of incoherent preformed hole pairs with magnetic vortices appearing in the plasma phase, supporting a Nernst signal. Finally, at an even lower temperature the hole pairs become coherent, the magnetic vortices become dilute, and SC appears beyond a critical doping. The proposed SC mechanism is not of the BCS type, because it involves a gain in kinetic energy, due to the lowering of the spinon gap, and it is “almost” of the classical three-dimensional XY type. Since both the spinon gap describing short-range antiferromagnetism order, and the holon pairing generating SC, originate from the same term in the slave-particle representation of the t-J model, the proposed approach incorporates a strong interplay between antiferromagnetism and SC, giving rise to a universal relation between Tc and the energy of the resonance mode, as observed in neutron-scattering experiments
机译:在t-J模型的量规方法中,我们针对掺杂不足的铜酸盐提出了超导(SC)的非BCS机制。我们使用(半象征性)奴隶粒子形式主义实现了无双重占用约束。 t-J模型描述中的掺杂剂会产生以空位为中心的反铁磁(AF)背景的旋涡状量子畸变,两个Néel子晶格上的核具有相反的手性。空位用无旋子费米隆子来描述,两个相对的Néel子格上的自旋涡之间的远距离吸引力是哈龙的配对力,最终导致SC。自旋涨落由玻色子的自旋子描述,其间隙由自旋旋涡上的散射产生。由于没有双重占领限制,因此在holon和spinon之间存在一定的吸引力,将它们绑定到一个物理孔中。通过自旋涡旋偶极子的出现,自旋涡旋引力通过降低自旋间隙来诱导自旋单旋[共振价键(RVB)]自旋对的形成。降低温度,提出的方法预计将有两个交叉温度作为SC转变的先兆:在较高的交叉处,形成有限密度的非相干霍隆对,从而导致空穴光谱权重的降低,而在较低的交叉处,则形成有限的密度。还形成了非相干的激子RVB对,从而产生了非相干的预制孔对的气体,在等离子相中出现了磁涡旋,从而支持了能斯特信号。最终,在更低的温度下,空穴对变得连贯,磁涡流变得稀薄,SC出现超出临界掺杂范围的现象。所提出的SC机构不是BCS型的,因为它会由于动子间隙的减小而涉及动能的增加,并且“几乎”是经典的三维XY型。由于描述短程反铁磁顺序的旋子间隙和产生holon配对的SC都源自tJ模型的从粒子表示中的同一项,因此,所提出的方法将反铁磁与SC之间的强烈相互作用纳入其中,在中子散射实验中观察到,Tc与共振模态能量之间的通用关系

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号